# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import os import torch import torch.distributed as dist try: # noinspection PyUnresolvedReferences from apex import amp except ImportError: amp = None def load_checkpoint(config, model, optimizer, lr_scheduler, logger): logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................") if config.MODEL.RESUME.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( config.MODEL.RESUME, map_location='cpu', check_hash=True) else: checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') msg = model.load_state_dict(checkpoint['model'], strict=False) logger.info(msg) max_accuracy = 0.0 if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) config.defrost() config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1 config.freeze() if 'amp' in checkpoint and config.AMP_OPT_LEVEL != "O0" and checkpoint['config'].AMP_OPT_LEVEL != "O0": amp.load_state_dict(checkpoint['amp']) logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})") if 'max_accuracy' in checkpoint: max_accuracy = checkpoint['max_accuracy'] del checkpoint torch.cuda.empty_cache() return max_accuracy def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger): save_state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'max_accuracy': max_accuracy, 'epoch': epoch, 'config': config} if config.AMP_OPT_LEVEL != "O0": save_state['amp'] = amp.state_dict() save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth') logger.info(f"{save_path} saving......") torch.save(save_state, save_path) logger.info(f"{save_path} saved !!!") def get_grad_norm(parameters, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1. / norm_type) return total_norm def auto_resume_helper(output_dir): checkpoints = os.listdir(output_dir) checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')] print(f"All checkpoints founded in {output_dir}: {checkpoints}") if len(checkpoints) > 0: latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime) print(f"The latest checkpoint founded: {latest_checkpoint}") resume_file = latest_checkpoint else: resume_file = None return resume_file def reduce_tensor(tensor): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= dist.get_world_size() return rt